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Abstnct. The spin 1 Schriidinger exchange model is shown to have the same symmetry in 
fields as the threecomponent Potts model so that the zero-field quadrupolar ordering can 
be simply related to the dipolar ordering. The question of the nature of the transition is 
investigated using previously derived high-temperature series for the free energy as a 
function of an extensive variable. For S = 1, mean-field-like behaviour persists in our 
higher-order approximations on the face-centred cubic lattice, indicating a first-order 
transition in this model. 

1. Introduction 

The Schrodinger exchange model (SEM) of magnetism first considered by Allan and 
Betts (1967) and Joseph (1967) is a generalization of the spin f Heisenberg model in 
the same sense that the Potts model (Alexander and Yuval 1974) is a generalization of 
the spin 3 Ising model. The interaction between nearest-neighbour spins is via the 
Schrodinger exchange operator Pij which permutes the states of spins on the ith and 
jth lattice sites and which reduces to the usual Heisenberg interaction for a spin $ system. 
The mean field approximation (MFA) for the spin S SEM yields exactly the same expression 
for the free energy as that of the q-component Potts model for q = 2S+ 1 (Kim 1974), 
and hence the SEM may be considered a quantum analogue of the Potts model. 

For a spin 1 system with which the present study is primarily concerned, the operator 
P i j  is (Schrodinger 1941) 

P i j  = (Si. Sj)+(Si * sjy- 1. (1) 
Hence the spin 1 SEM is identical to the spin 1 Heisenberg model with an isotropic 
biquadratic interaction whose strength j is equal to that of the bilinear interaction J .  
Such a biquadratic perturbation interaction -j(Si. Sj)' is present in magnetic systems 
because of the superexchange mechanism (Anderson 1959), and the effect of this on the 
nature of the transition has been of some theoretical interest (Chen and Levy 1973 
and references therein). For arbitrary values of j / J  it is difficult to go much beyond 
the MFA, which can give misleading results just as for the Potts model (Baxter 1973). 
For j / J  = 1, ie for the S = 1 SEM, Allan and Betts (1967) calculated the high-temperature 
susceptibility and free-energy series for the face-centred cubic lattice to the seventh 
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order in K ,  and later Chen and Joseph (1972) generalized this to the case of arbitrary 
spin and all lattices. From these works the values of the transition temperatures and 
the critical index y are known approximately (kBT,/J = 3.1 k0.1, y = 1.2-1.3 for the 
FCC lattice for S = 1, for example), but the question of the nature of the transition still 
remains to be determined. 

( S i , )  
and x ) denotes a 
thermal average. The fields conjugate to the magnetic ordering m and the quadrupolar 
ordering x are the external magnetic field H and the single-ion anisotropy D respectively. 
Therefore, the complete Hamiltonian we shall consider takes the form 

For a spin 1 system with isotropic interactions, only two order parameters, m 
(S: , ) ,  need be considered due to rotational invariance. Here, ( 

N N 

with J > 0, where the magnetic moment gpB is included in the factor H for notational 
convenience. 

In this work it is shown that the SEM has the same, exact symmetry in a three- 
dimensional field space as that of the Potts model. Consequently it is shown that the 
magnetic ordering and the quadrupolar ordering are simply related and that we have 
a situation in which either the transition is of first order or it is continuous but the 
transition point is a tricritical point when H = D = 0 (5 2). 

To investigate the question of the order of the transition for H = D = 0, the high- 
temperature series for the free energy on the face-centred cubic lattice previously 
reported (Kim and Joseph 1974a) are transformed from being a function of an intensive 
variable to that of an extensive variable so as to be able to consider the spontaneous 
ordering directly from the high-temperature series (5  3). Analysis ofthe series is presented 
in 5 4. We find that mean-field-like behaviour persists even with our higher-order 
approximation and that the general features of the ordering are much the same as for 
the q = 3 Potts model, even though the value of y is appreciably different ; y = 0.9-1.0 
for the Potts model (Kim and Joseph 1975). 

2. Symmetry in fields 

Since each spin state is completely equivalent as far as the two-spin interaction is 
concerned, we should expect a special symmetry in fields to exist similar to that in the 
Potts model (Kim and Joseph 1974b, Straley and Fisher 1973). We show in this section 
that this is indeed the case. Because the P i j  operator simply exchanges the states of 
two spins at the lattice sites i and j, it conserves the total number of spins in a state 
S,  = M (M = k 1,O). Therefore the Hamiltonian of equation (2) commutes with both 
C Si,  and C Sf,. Hence we can write the partition function ZN as a sum of traces in each 
subspace where X Siz is a constant and X S:, is a constant, that is : 

N I  

2, = Tre-@* = 1 V ( I - k , N - I , k ) e x p [ - I h 2 + ( I - 2 k ) h l ]  (3) 
1=0 k = O  

where h l  = BH, h2 = /ID, K = #3J, #3 = l/kBT and 

MN exp K 1 P i j  M l M 2 . .  1 ( <ij> 1 I 
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is the trace of exp(K Z( i j ,  Pij) in the subspace where 
N N 2 M i  = n l - n 3  and 2 M ?  = n , + n 3  ( n , + n , + n ,  = N ) ,  

i =  1 i =  1 

that is, the sum over all configurations which have n, spins in the M = 1 state, n, spins 
in the M = 0 state and n3 spins in the M = - 1 state. Here l M l M 2 . .  . MN) denotes a 
product state of eigenstates of Si , .  Now for each term in equation (3) we can change the 
states of n,  spins of M = 1 to M = 0 and n, spins of M = 0 to M = 1, denoting the 
state obtained from lM1 . . . M N )  by this interchange as IM; . . . M k ) .  The matrix 
element 

(M', . . . M;Y lexp( K Pij)l M ;  . . . M , )  
(U) 

is the same as 

since any matrix element of P i j  is invariant under such an interchange. Consequently, 
after summing over all the (,,&,) configurations, we find the identity 

W1, n2 ,  n3) = W,, n l ,  n3).  ( 5 )  

Similarly we have V ( n l , n 2 , n 3 )  = Y ( n 3 , n 2 , n , )  etc. Hence we conclude that I/ is 
invariant under any permutation of its arguments. 

Consequently, from equation (6) of Kim and Joseph (1974b) we have exactly the 
same symmetries in the two fields h , ,  h, as for the Potts model, ie the free energy 
f(K, h , ,  h,) obeys the relation 

(6)  

where 2h> = - h ,  + h,, 2h; = - 3h,  - h,. When h,  = h ,  = 0, which is the situation of 
interest to us, following Kim and Joseph (1974b) we see that the order parameters 
(m, x) in the ordered state can take on three sets of values, depending on the path along 
which we take the limits h,  + 0 and h, -+ 0. Furthermore, they can be all expressed in 
terms of one unknown parameter, that is (0, xo), (1 -$xo, 1 -$xo), ( -  1 +$xo, 1 -ix,) 
for 0 < xo < 5. 

Knowledge of the rigorous ground state (Kim and Joseph 1974c) together with 
phenomenological considerations enables us to identify the (0, xo) pair as the limit 
when h2 -+ 0' along the line hl  = 0. Hence the quadrupolar ordering x0(T), which is 
$ in the high-temperature region and zero at T = 0, becomes the quantity of central 
interest to us. If xo( T )  decreases continuously from the value %as we lower the tempera- 
ture through the transition temperature To, then we have a continuous transition and 
the point To in zero field can be identified as a tricritical point in the three-dimensional 
field space because of the three-fold symmetry (Straley and Fisher 1973). The MFA 
predicts a discontinuity of 4 in x0(T)  at To = zJ/4kB In 2 (Nauciel-Bloch er a1 1972). 

Bf(h;, h;, K )  = Bf(hi9 h2 9 K)-(hi + h2) 

2 

3. Transformations of the high-temperature series 

The free energy of the spin S SEM with arbitrary single-ion contributions has previously 
been calculated to seventh order in K (Kim and Joseph 1974a) in terms of the structure 
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functions Cl  3 g,/g\. For the case under present consideration (S = 1) where the 
Hamiltonian is given by equation (2), the g ,  functions become 

g, = 1 + 2 cosh(lh,) exp( - 1h2) (7) 

and the trace is to be taken with the product state of the eigenstates of Si,. We shall 
now utilize these high-temperature series to investigate the quadrupolar ordering xo( T) ,  
as defined in 5 2. 

For this purpose it is necessary to transform the free energyf( T ,  h ,  , h 2 )  to the 'Gibbs' 
free energy g( T, m, x) for m = 0. From now on we reserve the letter g to represent the 
free energy as a function of extensive variables. Since Bf is a concave and even function 
in h , ,  we note that 

Bg(T,O,x) = s~p(Bf(T,h,,h,)-xh,) 
hih2 

= sup(Pf(T, 0, h,)-xh,). (8) 
hz 

When h ,  = 0, 

1 +2  exp(-1h2) 
[ 1 + 2 exp( - h2)]" 

2 exp( - h 2 )  

1 + 2 exp( - h2)' 

= 

and if we define a quantity z by 

? E  

(9) 

then each G, becomes a polynomial of order 1 in z. Hence the free energy can be expressed 
in the form 

OD Kn 2n 

,,=, n!2 k = O  
-Bf(T,0 ,h2)  = -ln(l-z)+ 1 ~, , ,~ t ,  (1 1) 

x = d(Bf(T, 0, h2)) /& = ? ( I -  7)d( - Pf)/dT 

from which we get 

This result can now be inverted to give z as a function of x. The series can be further 
manipulated to give 

Finally, equation (13) can be integrated to yield 

where 
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and 

The known polynomials ‘4, calculated in this way are tabulated in table 1 for the FCC 
lattice and S = 1.  All calculations were carried out in integer arithmetic. 

Table 1. Y,  polynomials of equation (14) for the FCC lattice. 

Y ,  = 2 4 ~ - 1 8 ~ ’  

Y = - 4 8 ~  - 2 4 ~ ’  + 1 0 8 ~ ’  - 54x4 

‘P3 = - 384x + 720x’ - 1 2 0 0 ~ ’  + 2052x4 - 1944~’  + 6 4 8 ~ ~  

Y4 = - 1 7 2 8 ~ +  1 5 5 5 2 ~ ’ - 4 5 6 4 8 ~ ’ + 8 0 3 5 2 ~ ~ -  103464~ ’+98496~~-58320~~+14580~ ’  

Y = 4 6 0 8 0 ~  - 1 1 9 8 0 8 ~ ~  + 368640~’ - 1 6 0 7 0 4 0 ~ ~  + 4 9 8 5 2 8 0 ~ ~  - 1 0 4 6 8 2 2 4 ~ ~  
+ 14618880~~-  12577680~’+5948640~~-  1189728~” 

Y6 = 1674240~- 1 7 1 5 0 2 0 8 ~ ~ + 7 7 6 2 0 6 0 8 ~ ~ - 2 4 0 3 7 1 1 3 6 ~ ~ + 5 2 0 8 3 0 4 3 2 ~ ’ - 7 7 6 2 9 7 3 7 6 ~ ~  
+ 7 7 2 5 0 6 7 2 0 ~ ~  -469612080~’ + 1 2 6 0 8 7 8 4 0 ~ ~  + 25544160~” - 25194240~’ ’ 
+ 4 1 9 W x ’  ’ 

Y 7 = 18063360~ -4578831 3 6 ~ ’  + 2431005696~’ - 7051500288~~ +9129383424x5 
+ 1 1831732640~~ - 82019044800~’ + 200361916224~~ - 3167321 87520~’  
+ 3547581 10560~’  - 28021 1037 1 2 0 ~ ’  ’ + 148061299680~’ -46823495040~’ 
+ 6689070720~’~  

4. Series analysis for tbe spin 1 face-centred cubic lattice 

The spontaneous quadrupolar ordering xo( T) is obtained by the solution of 

h2 = - d(flg(T, 0, x ) ) / ~ x  = 0 

for the range 0 < x < 5. x = 3 is a solution for all temperatures since dYn/dx = 0 at 
x = 5 for all n. Note that if the series of equation (14) is cut off at first order in K, the 
result would be exactly the MFA expression for the free energy (Nauciel-Bloch er al 
1972). Hence, if we define by gN the series of equation (14) cut off at the Nth order in 
K, that is : 

K” 
,,= , n!2” /?gN flg(T,O,O)+xln(x/2)+(l-x)In(l-x)+ -Y,,(x), (18) 

then g, for N 2 2 can be regarded as successive corrections to g, ,  the MFA result. 
In the MFA there is a range of T for which multiple solutions of dg,/dx = 0 exist 

and by choosing the one which gives the lowest energy g ,  , a first-order transition results. 
To see the effect of the higher-order terms we can determine the ag,/dx = 0 contours 
for N = 2 , 3 , .  . . , 7 ,  successively. In practice it is easier to find T as a function of x ,  
which we denote by TN(x). The first-order transition is manifested by the non-physical 
negative slope of T,(x) near x = 3. For all N < 7 we find that a first-order transition 
exists. Table 2 shows the transition temperature To, defined as the temperature where 
the energy gN for the solution x = becomes the same as that of the x # 3 solution, 
and Ax is the discontinuity of xo( T) at To. Note that after an abrupt drop from N = 2 
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Table 2. To, Ax and T: obtained from g, for N = 1-7. 

1 4.328 0,333 4~000 
2 3.363 0.333 3.155 
3 3.265 @172 3,123 
4 3.330 0181 3.282 
5 3.294 0.229 3.230 
6 3.240 0.236 3.176 
7 3.227 0.197 3.184 

to N = 3, A x  remains nearly constant ( A x  - 0.2) and does not show any systematic 
decrease as N becomes larger. Also shown in table 2 is TZ lim,,,,, TN(x), the 
temperature at which the inverse of the zero-field, high-temperature susceptibility 
vanishes. In figure 1 we show the TN(x) curves for N = 1,2 and 7. For N = 3-6 they 
are all roughly located between those for N = 2 and 7. Also shown is the corresponding 
discontinuity in the quadrupolar ordering at To. For the higher-order approximations 
the temperature range where multiple solutions exist is appreciably reduced. For an 
exact solution this range should be zero since g is rigorously convex in x. 

The TN(x) curves just discussed are basically the zeroes of the [0, NI Pade approxi- 
mants (PA) to the h,(x, T )  series of equation (17). For a better approximation to T,(x) 
it is necessary to construct PA to the logarithmic derivatives of the h,  series to allow 
for a possible branch point behaviour (Baker et a1 1970), that is 

h,  - A ( T -  T,(x))-Y'"'. (19) 

Figure 1. TN(x) curves and the discontinuities of the quadrupolar ordering obtained from 
g N  for N = 1 , 2  and 7. N = 1 corresponds to the MFA. The transition is of first order (for 
all N < 7). 
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In table 3 we show the smallest positive real poles and their residues of PA to 
d(ln h,(x, T))/dK for values of x ranging from f to 0-05 for the three most significant 
PA : [3,2], [4,2] and [3,3]. All of these poles first decrease (hence increase in T) slightly 
as x decreases and then eventually increase in the same manner as for the [0,7] direct 
PA to h2 shown in figure 1. Hence the mean-field-like ‘bump’, although small in 
magnitude, still persists in these approximants. Comparable results were observed in 
our analysis of the q 2 3 Potts model (Kim and Joseph 1975). Similar type behaviour 
was also found for the [2,4], [5, I], [6,0], [5,0], [3, 11 and [4,0] PA. However, for the 
[4, 11, [2,3] and [2, 13 PA, there was a range of x near f where a real pole did not even 
exist while the [2,2], [3,0] and [2,0] PA showed an inverse type behaviour, ie monotoni- 
cally increasing K as x decreases. However, since the latter three PA are lower-order 
approximants, this probably has no great significance. 

Table 3. The smallest positive real poles (multiplied by lo4) and their residue of the Pade 
Approximants to d(ln h2(x, K))/dK for the three most significant approximants. 5 :  no real 
pole exists. 

L3.21 14.21 13~31 
X Pole Residue Pole Residue Pole Residue 

3 3201 1.16 3191 1.14 3191 1.14 
0.65 3193 1.17 3184 1.16 3184 1.16 
0.60 3175 1.20 3171 1.19 3171 1.19 
0.55 3166 1.22 3166 1.22 3166 1.22 
0.50 3165 1.23 3169 1.24 3169 1.24 
0.45 3174 1.24 3183 1.25 3183 1.25 
0.40 3196 1.24 3 209 1.27 3209 1.26 
0.35 3236 1.24 3253 1.28 3252 1.27 
0.30 3303 1.25 3324 1.29 3323 1.29 
0.25 3414 1.27 3439 1.31 3438 1.31 
0.20 3600 1.30 3634 1.36 3632 1.36 
0.15 393 1 1.38 3993 1.48 3988 1.47 
0.10 4642 137 4808 1.82 4779 1.76 
0.05 7660 234 C.C.9 - 9557 5.42 
0 CO CO CO 

2 

5. Conclusion 

We have shown that the spin 1 SEM, despite its quantum mechanical nature, possesses 
exactly the same symmetry in fields as the three-component Potts model. This result 
can easily be extended to arbitrary spin to show that the spin S SEM has the same 
symmetry as the q( = 2S+ 1)-component Potts model. Explicit quantitative considera- 
tions of these symmetry relations result in simple linear relations between the dipolar 
and the quadrupolar orderings in the S = 1 system. These two orderings, which might 
occur as separate phase transitions in other spin 1 systems (Blume and Hsieh 1969) 
are in fact two different aspects of a single quantity in the present case. That is, the 
phase transition (in zero fields) is characterized by just one order parameter for the 

Successive corrections to the MFA for the order parameter ~ ~ ( 7 ’ )  are found by 
Legendre-transforming the free-energy series. For all orders N = 2-7, we found a 

SEM. 
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discontinuous transition as in the N = 1 MFA. The discontinuity of xo(T) at the transition 
was in the range 0.20&0.04 for all N = 3-7, whereas for N = 1 and 2 Ax is 3. Also, 
the function x0(T) estimated from the appropriate PA showed that the non-physical, 
mean-field-like ‘bump’ did not disappear. We interpret these results as the manifesta- 
tion of a discontinuous transition similar to the situation in the 4 = 3 Potts model. 

References 

Alexander S and Yuval G 1974 J. Phys. C: Solid SI. Phys. 7 1609-20 
Allan G A T and Betts D D 1967 Proc. Phys. Soc. 91 341-52. 
Anderson P W 1959 Phys. Rev. 115 2-13 
Baker G A Jr, Eve J and Rushbrooke G S 1970 Phys. Rev. B 2 706-21 
Baxter R J 1973 J. Phys. C :  Solid SI. Phys. 6 L445-8 
Blume M and Hsieh Y Y 1969 J. Appl. Phys. 40 1245 
Chen H H and Joseph R I 1972 J. Math. Phys. 13 725-39 
Chen H H and Levy P M 1973 Phys. Reo. B 7 4284-9 
Joseph R I 1967 Phys. Rev. 163 523-6 
Kim D 1974 PhD Thesis The Johns Hopkins University 
Kim D and Joseph R I 1974a J. Phys. A:  Math., Nucl. Gen. 7 301-7 
~ 1974b Phys. Lett. 46A 359-60 
~ 1974 J. Phys. A :  Math., Nucl. Gen. 7 308-14 
__ 1975 J .  Phys. A:  Math. Gen. 8 891-904 
Nauciel-Bloch M, Sarma G and Castets A 1972 Phys. Rev. B 5 4603-9 
Schriidinger E 1941 Proc. R .  Irish Acad. 41 39-52 
Straley J P and Fisher M E 1973 J .  Phys. A :  Math., Nucl. Gen. 6 1310-26 


